Selective anion sensing based on a dual-chromophore approach[†]

Dong Hoon Lee,^a Ho Yong Lee,^a Kwan Hee Lee^a and Jong-In Hong^{*ab}

^a School of Chemistry and Molecular Engineering, Seoul National University, Seoul 151-742, South Korea. E-mail: jihong@plaza.snu.ac.kr

^b Center for Molecular Design and Synthesis, KAIST, Taejon 305-701, Korea

Received (in Cambridge, UK) 7th March 2001, Accepted 22nd May 2001 First published as an Advance Article on the web 14th June 2001

A new anion sensor 1 with an azophenol and *p*-nitrophenyl moieties as chromophores allows for easy colorimetric differentiation of F^- , $H_2PO_4^-$ and AcO^- with similar basicity.

Currently, the development of receptors for biologically important anions is emerging as a research area of great importance.¹ One of the more attractive approaches in this field involves the construction of chemosensors.^{2–4} This kind of system is generally composed of two parts. One is the anionbinding part employing various combinations of pyrroles, guanidiniums, Lewis acids, amides and urea/thioureas.^{1–5} The other is the chromophore which turns binding-induced changes into optical signals.^{2–4} These two parts are either covalently attached⁴ or intermolecularly linked.^{2*a,b*,3} Previously, we presented a new chromogenic azophenol–thiourea based anion sensor which allows for the colorimetric detection of F⁻, H₂PO₄⁻ and AcO^{-.6} However, this system is not able to discriminate between H₂PO₄⁻, AcO⁻ and F⁻.

We now present a dual-chromophore anion sensor **1** with *p*nitrophenylazophenol^{1*a*,7} and *p*-nitrophenylthiourea moieties as two different chromophores.⁸ The anion recognition *via* hydrogen-bonding interactions can be easily monitored by anion-complexation induced changes in UV-vis absorption spectra and with the naked eye.

Synthesis of sensors 1 and 2 is described in the ESI⁺,6.7.9*a* 1 and 2 contain four thiourea NH groups as hydrogen-bonding donors for anions^{9*b*} and one azophenol OH group as both an additional binding site and a color-monitoring unit.⁶ In the case of 1, the introduction of a *p*-nitrophenyl group to the thiourea moiety as another chromophore enables color differentiation of anions in a cooperative manner, along with an azophenol group upon anion binding. This approach brings together changes in λ_{max} of two chromophores to render colorimetric detection of anions more effective than with only one chromophore.

It turns out that the UV-vis absorption band of 1 in chloroform undergoes a red shift as a phosphate anion is bound. In the absence of anions, the spectrum of 1 is characterized by the presence of one absorption maximum at 339 nm. Upon

addition of increasing amounts of $H_2PO_4^-$, the peak at 339 nm
decreases while the new peaks gradually move to longer
wavelengths finally reaching maximum values at 374 nm (due
to a <i>p</i> -nitrophenyl group) and 538 nm (due to an azophenol
group) (Fig. S1a). Complexation with a series of anions results
in similar red shift tendencies. Clear isosbestic points are
observed, which demonstrates the existence of two states of a
1:1 complex. As can be expected from the UV-vis data, color
change occurs through addition of anions to the solution of 1.
Upon the addition of H ₂ PO ₄ ⁻ , the color of the solution changes
from light yellow to violet. The color change terminates after
the addition of 40 equiv. of $H_2PO_4^{-}$. However, in the case of
HSO ₄ ⁻ , Cl ⁻ and Br ⁻ , no detectable color changes are observed
upon excess addition of anions to the solution of 1 .

www.rsc.org/chemcomm

The qualitative changes explained above are reflected in the quantitative data in the UV-vis absorption experiment. In these chromophores, electronic excitation generally occurs through a charge transfer from the donor oxygen of the azophenol and donor nitrogen of the thiourea to the acceptor substituent (-NO₂) of each chromophore. Upon the complex formation of **1** with an anion, the excited state would be more strongly stabilized by anion binding, resulting in a bathochromic shift in λ_{max} .⁸ The color discrimination comes from different λ_{max} values in each complex and the relative contribution of the two chromophores (Fig. 1).

The degree of a red shift for **1** was determined to be $H_2PO_4^- \ge AcO^- \approx F^- > Br^- \approx Cl^- > HSO_4^- \approx I^-$. The maximum red-shift value ($\lambda_{max} = 538 \text{ nm}$) for $H_2PO_4^-$ can be understood on the basis of the guest basicity and structure of the complex. According to the basicity of anions,^{9b,10} $H_2PO_4^-$, F^- and AcO⁻ give stronger complexes and thus show noticeable color changes compared to other anions. $H_2PO_4^-$ with four oxygens affects both chromophores *via* multitopic hydrogen bonds to give rise to a pronounced color change, while F⁻ and AcO⁻ have a relatively weaker effect on the *p*-nitrophenyl group with respect to inducing color changes. This enables color discrimination between $H_2PO_4^-$, F⁻ and AcO⁻. In the case of sensor **2** with only an azophenol group as the chromophore, λ_{max} values upon complexation with $H_2PO_4^-$, F⁻ and AcO⁻ are similar

Fig. 1 UV-vis changes of 1 operated in $CHCl_3$ (5.0 \times $10^{-5}\,M)$ after the addition of 40 equiv. of anions.

[†] Electronic supplementary information (ESI) available: experimental details for 1 and 2, Figs. S1 and S2. See http://www.rsc.org/suppdata/cc/b1/ b102187g/

Fig. 2 UV-vis changes of 2 operated in CHCl3 (1.5 \times 10⁻⁵ M) after the addition of 40 equiv. of anions.

(Fig. S1b and Fig. 2) and thus the color differentiation between $H_2PO_4^-$, F^- and AcO⁻ is not feasible. This means that the cooperativity of dual-chromophores enables color discrimination of anions $H_2PO_4^-$, F^- and AcO⁻ with similiar basicity. Considering that an azophenol on its own does not exhibit color changes through addition of anions except for F^- ,¹¹ this result indicates that the introduction of *p*-nitrophenylthiourea groups as an anion-binding site increases the electronic interaction between **1** and the anion, and furthermore results in color discrimination between $H_2PO_4^-$, F^- and AcO⁻.

In summary, we have developed a new anion sensor **1** with azophenol and *p*-nitrophenyl moieties as two chromophores. This dual-chromophore system allows for colorimetric differentiation of $H_2PO_4^-$, F^- and AcO- with similar basicity.

Financial support from the KRF (Grant No. KRF-99-042-D00073) is gratefully acknowledged. We thank the Ministry of Education (BK 21 program) for a postdoctoral fellowship awarded to K. H. L., and predoctoral fellowships awarded to H. Y. L. and D. H. L.

Notes and references

- 1 (a) Comprehensive Supramolecular Chemistry, Chair ed. J.-M. Lehn, ed. J. L. Atwood, J. E. D. Davies, D. D. MacNicol and F. Vögtle, Pergamon, Oxford, 1996, Vol. 1; (b) Chemosensors of Ion and Molecular Recognition, ed. J.-P. Desvergne and A. W. Czarnik, Kluwer, Dordrecht, 1997, Vol. 492; (c) F. P. Schmidtchen and M. Berger, Chem. Rev., 1997, 97, 1609.
- 2 (a) K. Niikura and E. V. Anslyn, J. Am. Chem. Soc., 1998, 120, 8533;
 (b) A. Metzger and E. V. Anslyn, Angew. Chem., Int. Ed., 1998, 37, 649;
 (c) Y. Kubo, S. Maeda, S. Tokita and M. Kubo, Nature, 1996, 382, 522.
- 3 (a) J. J. Lavigene and E. V. Anslyn, Angew. Chem., Int. Ed., 1999, 38, 3666; (b) P. A. Gale, L. J. Twyman, C. I. Handlin and J. L. Sessler, Chem. Commun., 1999, 1851.
- 4 (a) C. B. Black, B. Andrioletti, A. C. Try, C. Ruiperez and J. L. Sessler, J. Am. Chem. Soc., 1999, **121**, 10 438; (b) H. Miyaji, W. Sato and J. L. Sessler, Angew. Chem., Int. Ed., 2000, **39**, 1777; (c) P. Anzenbacher, K. Jursíková and J. L. Sessler, J. Am. Chem. Soc., 2000, **122**, 9350.
- 5 For reviews, see (a) Supramolecular Chemistry of Anions, ed. A. Binachi, K. Bowman-James and E. Garcia-Espana, Wiley-VCH, New York, 1997; (b) Supramolecular Chemistry, Concepts and Perspectives, ed. J. M. Lehn, Wiley-VCH, Weinheim, 1995.
- 6 D. H. Lee, K. H. Lee and J.-I. Hong, Org. Lett., 2001, 3, 5.
- 7 A. Tsuge, T. Moriguchi, S. Mataka and M. Tachiro, J. Chem. Soc., Perkin Trans. 1, 1993, 2211.
- 8 S. Nishizawa, R. Kato, T. Hayashita and N. Teramae, *Anal. Sci.*, 1998, 14, 595.
- 9 (a) M.-S. Muche and M. W. Göbel, Angew. Chem., Int. Ed. Engl., 1996, 35, 2126; (b) S. Nishizawa, P. Bühlmann, M. Iwao and Y. Umezawa, Tetrahedron Lett., 1995, 36, 6483.
- 10 T. R. Kelly and M. H. Kim, J. Am. Chem. Soc., 1994, 116, 7072.
- 11 K. H. Lee and J.-I. Hong, Tetrahedron Lett., submitted.